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INTRODUCTION

This paper considers the coherent processing of detection waveforms having the form

of frequency-hopped uniform pulse trains. It is shown that if the parameters of the pulse

train are properly chosen, the range and doppler responses will be unambiguous, and will be

consistent with the overall burst duration and bandwidth, respectively. It is further demon-

strated that very well-behaved range-doppler sidelobes will be obtained if the frequency

schedule or "firing order" is derived from a class of permutation matrices having special

properties.

It might be of some interest to note that the basic concept demonstrated here came

from an application area in which fully-coherent processing was found to be inappropriate.

In a discussion of this prior work with Dr. P. E. Green, Jr. of IBM, it was suggested that an

extension of scope to include the fully coherent signal processor might prove useful. This

paper is the direct result of Dr. Green's comments.
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A SPECIAL CLASS OF PERMUTATION MATRICES

In a study of long-range active sonar systems it was found that time-vacying multi-

path "medium effects" could seriously limit the performance of high TW-product, fully

coherent systems [1]. The medium-spreading effects are not unlike those encountered by

Price and Green [2] in radio astroromy work. The medium spread factors encountered in the

sonar case suggested use of a hybrid coherent/noncoherent technique. Simple CW pulses are

transmitted in the available time-frequency space. The receiver employs a bank of filters

whose outputs are individually detected. A delay-and-add matrix is then used for the gen-
eration of echo amplitude vs range outputs for a set of assumed target-doppler values. The

filter oank provides the coherent processing, while the detectors and the delay-and-add

matrix perform a non-coherent addition function in the hybrid receiver/processor.

The problem of choosing the frequency-hopping pattern for the burst is influenced by

several factors: Under peak-power limitations energy per pulse will be maximized if only

one pulse is transmitted at any one time. Energy per pulse is a key parameter of the detec-

IN tion process under noise-limited conditions. Under reverberation (clutter) - limited condi-

tions a self-jamming situation exists so that independent "looks" at the target are needed to

enhance detection performance. For example, a second pulse placed in a frequency channel

will be wasted since the doubling of the echo energy is negated by a doubling of the background

(reverberation) level. Hence only one pulse should appear in each frequency channel o' the

transmit burst if performance in reverberation (clutter) is to be optirr 'zed.

Having established the one pulse per time period and one pulse per frequency channel

rule, there still remains the problem of the range-doppler ambiguity in selecting firing order.

The classic frequency staircase or quantized FM (QFM) pattern, for example, is a very pocr

choice from an ambiguity standpoint. In an NxN frequency-time array there are N! patterns

that satisfy the "one-and-one" condition; how does one select "good" patterns?

We invoke first the narrowband assumption which implies that Larget doppler will shift

all echoes by the same amount. [This is definitely not valid in most sor.ar applications, but

the patterns which result using the narrowband assumption perform surprisingly well under the

actual (broadband) operating conditions. I The ambiguity problem arises from the fact that

the receiver operates as a two-dimensional coincidence detector. For example, when N

pulses arrive having the frequency and time positions of the transmit pattern (zero-doppler

target), these N pulses are detected, delayed and combined to given an N-value response out

3



of the zero-doppler processor. Consider now that a second (moving) target is also present.

A frequency-shifted echo pattern from this target will result. If this second frequencv-

shifted pattern has K coincidences with the zero-doppler pattern lor some relative time shift,

the zero-doppler processor will give a K-value response to this echo. The value K rmay not

be made zero for all time and frequency shift., but can it be constrained to unit level?

The problem can now be very simply stated: Place N ones in an otherwise null N

by N matrix such that each row contains a single one as does each column. Make the pla e-

ment such that for all possible x-y shift combinations of the resulting (permutation) matrix

relative to itself, at most one pair of ones will coincide.

In spite of the geometric simplicity of the problem statement, early efforts toward

a solution either failed or gave very limited results. A few mathematicians were contacted

with absolutely no results. A computer program which did a random search for ideal

patterns failed miserably until the threshold was raised above the ideal level. The program

then gave some useful patterns which satisfied the engineering needs of the moment. How-

ever, questions concerning the ideal patterns remained largely unanswered.

It was realized early on that an alternate statement of the problem could be made:

Order the complete set of integers from 1 to N such that the difference triangle formed from

the ordered sequence shall have no repeated terms in any row. That is, form the first row

by taking differences between adjacent numbers. All differences in this row must be unique.

Form the second row by taking differences between next-adjacent terms. This row must

also be free of repeated values, and so forth. A simple example of this process is shown in

Table 1 for N = AO. In the table L represents the order of the difference,{0ml the ordered

integer set.

TABLE 1

DIFFERENCE TRIANGLE FOR N =10

L :S 2 4 8 5 10 9 7 3 6 1

1 2 4 -3 5 -1 -2 -4 3 -5
2 6 1 2 4 -3 -6 -1 -2
3 3 6 1 2 -7 -3 -6
4 8 5 -1 -2 -4 -85 7 3 -5 1 -9
6 5 -1 -2 -4
7 1 2 -7
8 4-3
9 -1
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Using the difference triangle method, ideal sequences were found for all N up to 12.

N = 13, however, always remained beyond my pencil-and-paper grasp. Realization that the

problem could be stated in terms of the ordered integer set convinced me that this was a

problem of antiquity. With this in mind, Professor Solomon W. Golomb was contacted, a

short summary of the problem and work to date was given, and references concerning

seqtvences having the stated property were requested.

Golomb's prompt reply was notable for two main reasons: First, he stated that no

reference could be given as this was apparently a new problem. Secondly, he offered me a

series of conjectures that have proven quite accurate. Golomb believed that solutions existed

for all N, that the number of solutions would grow very rapidly with N, and that the density of

solutions would become very small as N became large. Notable progress has since been made

by Golomb, Taylor, Welch and Lempel. Some of their results may be found in a recent [3]

and a pending [4] publication.

All known systematic constructions for these arrays involve the use of primitive

elements of finite fields. A very elegant and simple construction method is given in a

theoreirt by L. R. Welch [4]:

"Let g be a primitive root modulo the prime p. Then the (p-1) x (p-i) permutation

matrix with aij = 1 iff j - gi (mod p), 1 < i < p-1, 1 < j < p-1 is a Costas array. "1

The difference triangle example of Table 1 mr-de use of Welch's theorem for p = 11,

g = 2. Note that 2 raised to succeeding powers (modulo 11) will yield the ordered integer
set shown in the example. Armed with the new knowledge that the density of solutions is
small (relative to the number of possible permutation matrices, N!), the writer developed

computer programs which do an ordered, exhaustive search for these arrays. These pro-

grams have produced solutions for N = 19 for which there are no known algebraic cgnstruc-
tions. Also the programs have shown that the number of solutions for N = 3, 4, ---- 12 are:
4, 12, 40, 116, 200, 444, 760, 2160, 4368 and 7852 respectively.

Unfortunately the fastest algorithm available becomes useless for N values much above

20. At one time there was no known construction for N = 24. A computer search for this N

was started many months ago which has yet to finish. Several hundred VAX* 11/780 processor

hours are estimated to have been expended to date on a weekends-only, slow-queue, lowest-

priority basis. In the meantime an algebraic construction for N = 24 has been discovered

and the VAX* search has been abandoned.

*VAX is a trademark of the Digital Equipment Corporation.
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In the sectio,•s which follow two arrays based on Welch's theorem will be used. A
"Welch-lO" based on p = 11, g = 2 bas firing order:

2, 4, 8, 5, 10, 9, 7, 3, 6, 1
and a "Welch-30" based on p = 31, g = 3 has firing order:

3, 9, 27, 19, 26, 16, 17, 20, 29, 25
13, 8, 24, 10, 30, 28, 22, 4, 12, 5
15, 14, 11, 2, 6, 18, 23, 7, 21, 1

These arrays are used because they are very easy to calculate. There is no reason
to believe thLt other constructions due to Taylor, Lempel, Golomb, or the computer-derived

sequences generated by the writer's algorithms would produce significantly different results

for the applications which follow.

I
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ANALYSIS OF A SPECIAL CLASS OF BURST WAVEFORMS

It is useful to formalize the difference triangle property associated with this special

class of permutation matrices. Let the sequence of ordered integers be represented by

{ = 00' 01' 2' 03' 0N- ()

The L row of the difference triangle will contain terms:

ALik = K+L -0k (2)

L = 1,2, -- , N-2; k= 0, 1, 2,---, N-I--I,

and for every L

AL, •AL, forr s (3)

A fairly general treatment of pulse trains is given by Rihaczek [5] . We treat here a

special case in which N unit envelope CW pulses of duration T appear contiguously to form a

burst of overall length NT. The frequency of each pulse will be given by

B
nn (4)

where the 0 are taken from (1). (In the analysis which follows 0 -1 is actually assumedn D
so that 0 < 0 < N-1. This unit shift from the Welch theorem results is trivial but

convenient.) Note that the time-bandwidth product of the resulting waveform is approxi-
2mately equal to N

The pulse train I (t) will be given by (complex envelope representation)

p (t) = Pn (t-nT) (5)

n--0
where +j2rf t

Pn(t) = e n <t<T (6)

Pn (t) = 0 elsewhere

V
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The delay-doppler ambiguity function ti defined as

*= L A A (-) e 1cd (7)
A2 J

-00

Where E is the total energy of ;& (t). For the example at hand E NT/2 so that

X(, v) 1 f u* (+r)/ (o. -r e +J2T w" do (8)

-00

It Is easily proven that

X (-"-)I1 X (0 10) (9)
and

jX (-r, 7 ) X (T, V) (10)

and

2

fII dfrdv= 1 (11)
M-€ -M•

For computational purposes advantage was taken of (10) so that only non-negative

values of T are required. The relationship

r = kT + 6 (12)

0< 5 <T, k=0, 1, 2--, N-1

was used in conjunction with (6) and (8) to obtain

N-i-k N-2- k

X (T, P) 2 A + E B (13)

r=0 r--0

where

A = (T -Z6) sin ( x exp jr (2kT+2rT+T+6) -2fr 3]

NT r 9(T -6)rD

(14)
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where
w hrr - fk+r + v (15)

6n B = e{inwv8 x exp jif [y(2kT+2rT+2T+6) -2 2~6] (16)

and

r- fk+r+1 (17)

The subscripted frequency values conform to (4).

The above approach provided a computational convenience for producing the quanti-

tative data shown in the figures which follow. A different development of (8) will now be

undertaken which better demonstrates physical principles. Define the cross-correlation

fAnction

-00

nm (r, V) (T- IrI sinaT - IT-I x) exp Pra(T + -jifmT1 (19)
= T ira (T - P In

I <_ T, zero elsewhere

Sfn'fm" v (20)
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The autooorrelation function, +nn, is obtained from (20) setting m = n to

obtain

Cr ) T -I11 sn) v v (T- ITO x expr[jwvi (T+1 ~ifT(14n T~v I T (T+ -j2IM

T" j < T , zero elsewhere.

Using (5), (6) and (8)

(T )=1 f_ N-j! N-1 (-T +j21r P a (22)I- Pn* (a- nT) x Pm(U-T-T)

Changing summation and integration orders and grouping summations into like and unlike

subscript categories, one 3btains

M-1 e21nT[nnN-1

X(r P) -I- eT +j21nTV [ (T.P) + (r-(n-m) T, v j
n=O m=0

ma~n

Note especially that (23)

nm (v) = nn(TV) = 0nm (24)

tor 1" I_? T

The magnitude of X (r, v) represents the magnitude of the coherent processor response

to a pulse train arriving with delay T and freq iency or doppler shift v. We would like a zero

response everywhere except for r = 0, P = 0. Equation (11) shows that this is not possible. If

the main peak of I x I is narrow in both r- and t, for good resolution properties, the volume of
I X 12 under the main peak will be small. The bulk of the volume in such cases will then fall

10



in the "pedestal" or "tsidelobe"l region of the ambiguity function. Waveform choice to minimize

the deleterious effects of the pedestal is an important facet of detection system design. The

criteria vary with the application at hand [2,6,7]. In this work we shall try to keep the peak

sidelobe values confined.

It will now be shown that the central peak of (23) is associated with the 40nm sum while

the sidelobe responses may be associated, in the main, with the 4bnm sum.

Consider first the r = 0 axis. Note from (24) that all 4 nm terms are zero here.

Then

N-1

X (0, v) e 4 (25)

n--O

Using (21) and the identity

N-1

Sejar = eJ(N-l) a/2 sin N a/2 (26)sin a/2
r=0

one obtains the exact result

(0, v) = ejNIW'IT sin Nir vT (27)

which shows that the doppler resolution of the N-pulse burst is identical to that of a CW

pulse of duration NT.

It is convenient to define a normalized frequency variable y, where

y =vT (28)

Since the frequency channel spacing is l/T, y is in essence a measure of frequency in units

of channel spacing. Equation (27) may then be written as

= jiNy sinfTNy (9X (0,y) e e wNyy

Iry(9
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The first zero of X will occur at y = * 1/N. The half-baseline width of the main lobe, 1/N,

may be considered a measure of system frequency resolution.

The behavior of X (7-, V) of (23) along the range axis (v=0) is compliated by the

fact that the +n (second) summation does contribute to this main axis response, even though

it is only the + (first) summation that is desired here. Let Xt be that part of (23) which
IM

excludes the second sum

N-1

x 0 , -L = + *(7,o) (30)
N , n

* n=O

Use of (21) yields
N-1 j2f

X'e(n 0)= (T(3 1r) e=J2(31)
n=O

IrI T, zero elsewhere.

Now fn is given by (4) In terms of the ordered Integer set 9 n} as per (1). Note however

that in (31) a sum over N terms is involved, the order in which the f values appear isn

immaterial. If we decrement each 0 n by 1 then the value n/T may be used for f in (31).

This yields

N- _-j2vn T-

X I(Cr,O) (T ITI e T (32)

I n=O

Use of the Identity (26) gives

T

X-' )= - T J ( e sn- Tr/T (33)= T eN sin it -,/T

7- <T, zero elsewhere

I
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The autocorrelation terms of (23) produce a range axis magnitude response that has a

unit peak value at T = 0 and would also peak again at r = T were it not for the (T - I T 1) factor.

For the larger N values the sin Nz/(N sin z) ratio behaves very much like the sin Nz/Nz form

of (27). It is convenient to define a normalized delay variable as

'~Tx =(34)

Then (33) becomes

Xt (x, 0) = (1 -[ x 1) e-jT(N-1) x sin•rNx (35)N sinl~x

x I < 1, zero elsewhere

For I x > 1 (1 rI > T) like-frequency pulses no longer overlap in the convolution integral of

(7) and XI has zero value here. The r-axis response beyond IT I-- T is entirely due to

cross-product terms 4)nm of (23), and in a sense these line regions become part of the

pedestal or sidelobe regions.

An examination now begins of the 4)nm crossproduct terms of (23) which are respon-

sible for the pedestal of the ambiguity surface. Equations (19) and (20) show that the 4)nm

terms will peak to unit value when

ad -r = Tp (n-m) T (6

and (36)

Because of central-point symmetry of the X function only positive delay values need be con-

Ssidered. The range of (n-m) of (36) will be 1. to N-1. So that

Tp = LT, L = 1, 2,---(N-1) (37)

For any fixed Lvalue,n exceeds m by this amount. Then from (36)

0 0 A
V = f f m+L In = L, m (38)
p in+L in T T T

where 0 , A are defined in (1) and (2).

13



It has been shown previously in (3) that the ALO I set contains no repeated terms for

a fixed L. Thus at the fixed delay x = L, each sidelobe term peaking on this line will do so

at its own unique frequency as given by (38). Since this logic holds for any and all delay

values L, it may be seen that all 4nm peaks involve only one term of the second sum of (23).

The+ rm peaks will be spaced by integral values in both x and y.

While these peaks do not coalesce, their density of distribution Is not uniform. There
are exactly N-L peaks at delay 7 = * LT. At unit delay there are N-1 peaks and at delay T- =

(N-i) T there is but one peak. An equivalent argument may be made by reversing delay and

frequency roles, At frequency P= * L/T there are exactly N-L peaks over the complete r-

span for this frequency. Thus .'he area near the origin tends to be rather busy so that the

technique is almost a counter examaple of Green's Theorem[6, 7J, as indicated in the next
paragraph. (Green conjectured on the maximum amount of area near the main lobe that

could be kept completely free of sidelobe volume.)

Each +nm peak has a region of influence which is constrained absolutely to a span 2T

units wide In the delay direction. This r cutoff results from the limited pulse duration T.

The region of influence In the frequency direction of each 0nm is not similarly constrained.

The behavior of each sidelobe peak is essentially that of ý nm of (21) with ir, Pmeasured

from peak center. The behavior in frequency is of the sin z/z form. Thus each peak has a

"channel" of Influence of width 2T in delay. This influence decays to zero at the channel

delay boundaries and drops off as sin z/z in the frequency direction. These channels of in-

fluence explain why the v axis (,r = 0) Is completely clear of pedestal (cross product) effects

and why the T axis (v= 0) 1o never free from these terms.

The overlapping of the+ Mn sidelobe terms produces reinforcement and cancellation

effects which are quite complex because of the amplitude and phase relationships involved.

However certain locations in the pedestal region will have predictable values. Along any

delay ridge line •r = T as per (36) the delay argument of of (23) will be zero. We may
p nm

now use (19) to obtain

sinw(fn-fm - 0) T
* OIn= (39)• mf -f-I

now let

r (40)
r1

14



where r is any integer. The angle 0 of the sin 1/8 function of (39) becomes [Dee also (4)].

iI T = 0 -m ; r) (41)

Clearly (39) will then be zero for all P # 0 and will be unity only for 3 = 0. So with the nor-

malization implied by (23) it may be stated that in the sidelobe region, for all integer co-

ordinate pairs of the normalized delay (x) and frequency (y), the I X Ifunction will either be
• zero or 11N.

There is an orthogonality effect at work here between "nm terms belonging to a delay

channel. Each ,nm center occurs at the zeros of all other nm tails in that channel. Thus

the sidelobe values are constrained at a set of points to be either 1/N or zero in value. Even

though the sidelobe vp.lues are "anchored" at N (N-i) points, the actual peak values in the

pedestal exceed 1/N. The area under these peaks appears to be quite small. This situation

will be demonstrated in the presentation of numerical data which follows.

I
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NUMERICAL RESULTS

The building block of the burst waveforms considered here is the simple CW pulse.

The ambiguity surface for a CW pulse may be obtained by setting N = 1 in (23) and using

(21) to obtain

( sinny (1- 1x) (42)
I(x,yi l=)-y(1t-xI)

where x is normalized delay (TIT) and y is normalized frequency (VT). At zero doppler

(y = 0) a cut along the delay axis would itnow a triangle of unit height at x = 0 and two-unit

base extending from x = -1 to x = +1. At zero delay (x = 0) a I sinny/vy I behavior would

result. A "3-D" view of this surface is shown in Figure 1. The "viewer" is positioned out

on the +x axis and is looking toward the origin, Successive frequency "cuts" at different

delay values are calculated and plotted with successive y-offsets. The plotter pen is lifted

when a previous cut surface obscures view, thus creating a "3-D" effect. (The writer is

indebted to Dr. L. W. Bauer for this very useful software.) The vertical scale on the right

pertains to the first cut (which is everywhere zero in this case). The vertical scale for the

last cut starts at the tic mark above the word "DELAY" on the left vertical axis and extends

to the top line of the chart box. These plots are useful in presenting an overall picture of the

detection process. For precise quantitative work I X I versus x or y plots will be employed.

Figure 2 shows a portion of the ambiguity surface for a 10-pulse QFM burst in which

each successive pulse has a 1/T Hz frequency offset from the previous pulse. The classic

FM-ridge Is clearly in evidence and contains most of the volume under the surface. Note

that the range and doppler resolution of the ridge changes with delay. At large delays only

a few pulses are effectively combined so that the resulting time-bandwidth product of the

process is low. More pulses become involved as x approaches zero and the ridge shows a

corresponding narrowing in x and y. Figure 3 presents a somewhat different perspective of

the same surface.

Figure 4 shows the ambiguity surface for a 10-pulse code derived from Welch's

theorem using p = 11 and g = 2. Since the volume under the X I surface must equal unity,

a change from QFM to the Welch pattern spreads the FM ridge volume out over the pedestal

region. The difference triangle of Table 1 predicts a sidelobe at delay x = 9 and frequency

y = -1. This peak may be clearly seer near the front of Figure 4. At delay 8 peaks at

y = -3 and +4 are predicted and are clearly visible. At delay 7 peaks at y = -7, 1 and 2 are

17
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indicated by Table 1. The peak at -7 may be seen in Figure 4 but the peaks at 1 and 2

coalesce and are not obvious, As the delay gets smaller more peaks exist per delay-axis

cut and overlap effects mask the basic form of the individual peaks.

Figure 5 shows the same data as Figure 4 without the successive y-axis offsets used to

emphasize the "3-D" effect. As aresult all constant-delay frequency plots are referenced to

the baseplane and pedestal peaking effects are accurately displayed. The tendency for side-

lobe spiking above the 1/N level due to 4,nm term overlaps near the origin is evident in this

figure.

The doppler axis response for x = 0 is shown in Figure 6. As was predicted from (29)

and associated discussion a sin z/z beLavior is seen here with the zero of the mainlobe

-ccurring at y = 0. 1 = 1/N. Note that this behavior continues without end in the y dimension.

Figure 7 shows the delay axis response for y = 0. From x = 0 to x = 1 the sin Nz/

(N sin z) functional as described in the discussion of (35) is operative along with spillover

from the pedestal ý nm terms. Beyond x = 1 the ,nn terms vanish and only the 4,nm pedestal

terms of (23) are operative. Since no ,nm peaks occur on the x axis, the response will be

zero on this axis for all integral values of x as was discussed following (41). Figure 7

corroborates this conclusion.

The worst sidelobe peak was measured as 0.21 which 2.1 times the (iormalized) 4,nm

term peak value. The general neighborhood of this peak is shown in Figure 8. It appears
that random phasing of the 4,nm sidelobes can produce isolated peaks of the order of 6-dB

over the 1/N value.

The Welch-30 code for v = 31, g = 3 Is considered nextwl It was shown earlier that if

x, y are restricted to integer values, the pedestal region will be either zero or 1tN depend-

ing on the nonexistence or existence of a 4,nm peak at the x, y coordinate. Figure 9 shows a

3-D plot restricted to integer x and y values. The sidelobe peaks as well as the main peak

for this code are clearly displayed by this plotting artifice. Triangles indicate isolated peaks

while the flat-topped sections indicate two or more frequency-adjacent peaks. The increas-

ing denaity of peaks with reduction of delay is quite evident from this figure.

22
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Figure 10 Is a zero-offset 3-D plot of the Welch-30 ambiguity surface which shows
peaks in true perspective. Pedestal spiking above 1/N near the origin is evident. Com-

parison with Figure 5 would indicate that pedestal peak levels do vary inversely with N with
2/N representing a fair estimate of the largest pedestal peak. There does not appear to be

any theoretical bar to the use of arbitrarily large N values.

Figure 11 shows the doppler axis cut for the 30-pulse code. As expected a sin z/z

frequency behavior is evidenced with the first zero at y = 1/30. Figure 12 shows the delay

axis cut out to x = 1. The first zero here Is at x = 1/30 as expected. The complete positive

delay region for y = 0 is shown in Figure 13. The main peak is obscured by the choice of

the x-axis scale. The sidelobes are very well behaved, with relatively few sharp excursions

above the 1/N value.

Figure 14 Is a frequency cut taken at a delay of x = 25. The 25th row of the difference

triangle for this Welch-30 sequence predicts sidelobe peaks at y = -25, -20, 2, 14 and 15.

These locations are clearly confirmed by Figure 14. Note that the isolated 1 nm terms have

exactly the peak value 1/N while the two peaks at y = 14, 15 create mutual interference

effects which result in a small spike which exceeds the 1/N value.

Figure 15 shows a frequency cut taken closer to the main peak, at x = 5. The mutual

interference effects from groups of frequency-adjacent 1nm peaks are clearly evident near

the center of this plot. The highest peak found for this waveform was at delay x = 1.4 and

had a value of 0. 078. Figure 16 shows a frequency cut at this delay with the peak in question

showing near y = 3.

The ambiguity surface taken for a region near this peak is shown in Figure 17. At the

front of this plot Is a frequency cut taken at delay x = 3. Note that there are 'nm peaks at

y =4, 6, and 7 and non peak at y =5. In spite of the gap at y 5 the mainlobe regions ofnm
the peaks at 4 and 6 are highly distorted indicating significant overlap effects from the many

(27)0 peaks which fall at this delay. The rapid undulations of this surface are to be com-
rnm

pared with equivalent data taken for the Welch-10 burst in Figure 8. Note also the lower

level of the Figure 17 data as compared to Figure 8. Increasing the pulse count from 10 to
30 has increased range and doppler resolution by 3 to 1 and has lowered the sidelobe height

by about the same ratio.
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SUMMARY AND CONCLUSIONS

When the frequency-time pattern of a pulse train corresponds to one of the patterns of

the special permutation matrices described, the basic pedestal components are denied loca-

tion coincidences throughout the sidelobe region, thereby minimizing the peak noncentral

response. Specification of the frequency channtel spacing to be equal to the reciprocal of the

pulse length prevents ambiguities along the delay axis so that the resuJting central peak pro-

vides good resolution in both delay and frequency.

The peak pedestal level varies from 1/N away from the origin to 2/N near the central

peak. This method of waveform design can be extended to arbitarily large time-bandwidth

(N2 ) products.

Further refinement of this basic technique might involve weighting over the pulse train

for both transmit and receive. Modification of the individual pulse envelope and phase charac -

teristics could also be considered for creation of more suitable ambiguity surfaces. None of

these variations were addressed here. Such extensions of the technique for sidelobe modi-

fication must be done carefully so that the integrity of the main response is maintained.
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